Methanol Activation in Organic Synthesis

Darren Poole
TJD Group Meeting
140513

Activation of alcohols:

- Activation of alcohols well known in synthesis:
 - Classical methods tend to involve either protonation or conversion into a leaving group.
 - Protonation can fail as it may also protonate the incoming nucleophile, especially if it is an amine, and these conditions are not tolerated by acidsensitive functionality.
 - Conversion to alkyl halides or sulfonates can lead to inherent toxicity problems, many are mutagenic.
- "Borrowing hydrogen":
 - Oxidise alcohol to aldehyde, convert into another functional group, then reduce intermediate to final product. E.g. Alcohol → Aldehyde → Imine → Amine
 - Only waste product is water.
 - Variety of catalysts based on ruthenium and iridium with varying levels of complexity.

Activation of methanol:

- Few catalysts show activation of MeOH:
 - Alkylation of amines:
 - IrCl(cod)₂/Py₂NP(*i*Pr)₂ (*Adv. Synth. Catal.*, **2009**, p2903)
 - Alkylation of nitriles:
 - RhCl₃.3H₂O/PPh₃ (*Tet. Lett.*, **1981**, p4107)
 - Ru/Hydrotalcite (*J. Am. Chem. Soc.*, **2004**, p5662)
- Suggested by Krische (Nat. Chem., 2011, p287) that the reason for the more difficult activation of methanol is due to the higher energetic demand for methanol dehydrogenation:
 - $-\Delta H(MeOH) = +84 \text{ kJ mol}^{-1}$
 - $\Delta H(EtOH) = +68 \text{ kJ mol}^{-1}$
- However, more recently, other examples have appeared in the literature, suggesting that this is not such a difficult process.

 Krische and coworkers have developed a method for oxidising methanol and the *in situ* capture of formaldehyde with allenes.

Krische, Nature Chemistry, 2011, p287

Catalyst screening:

Entry	Ligand, X	Eq. MeOH	Solvent (M)	T (°C)	Yield (%)
1	BIPHEP, H	10	PhMe (1)	80	29
2	BIPHEP, H	15	PhMe (1)	80	39
3	BIPHEP, H	20	PhMe (1)	80	36
4	BIPHEP, OMe	15	PhMe (1)	80	37
5	BIPHEP, CN	15	PhMe (1)	80	39
6	BIPHEP, Cl	15	PhMe (1)	80	44
7	DPPF, CI	15	PhMe (1)	80	63
8	DPPF, Cl	15	PhMe (2)	80	67

Substrate scope: OH DPPF-CI (5 mol%) **MeOH** PhMe (2M) 80 °C, 24h **DPPF-CI** Ме РМВО PMBO PMBO' РМВО **PMBO PMBO** 67% 64% 65% 60% **59%** 68% Ме **PhthN PhthN** 70% 65% 65% 67% 66% 65%

Mechanistic studies:

 These results suggest that allene hydrometallation is reversible, forming a transient vinyliridium species.

Mechanistic studies cont:

- For methanol addition, $k_H/k_D = 2.0$, whereas for benzyl alcohol, $k_H/k_D = 1.1$, suggesting that:
 - Dehydrogenation turnover-limiting for MeOH
 - Carbonyl addition turnover-limiting for BnOH
- Noteworthy that higher temperatures needed for methanol.
- Relative energies of dehydrogenation and electrophilicities of carbonyl.

Proposed mechanism

 Recently, Glorius and coworkers have developed a relatively mild formylation of amines utilising MeOH as a formyl source.

Glorius, Org. Lett., 2013, p1776

^a Reactions carried out with 4 mol% Ru(cod)(2-methylallyl)₂ and 8 mol% ICy.HCl

Substrate scope cont:

- Lower yields for substituted benzylamines due to "further reaction of formamide"
- Reaction of enantiomerically pure amines yields products with no erosion of ee.
- Reaction does not proceed for less nucleophilic amines,
 e.g. anilines
- Reaction does not proceed in the presence of coordinating groups e.g. pyridines, carboxylic acids.

Proposed mechanism:

- Investigated by NMR.
- No methylallyl ligands in active catalyst.
- β-hydride elimination of methoxide ligand
- II. Addition of amine to coordinated formaldehyde.
- III. Extrusion of proton.
- IV. Second β-hydride elimination of coordinated hemiaminal.
- V. Ligand exchange.

 $^{a}[Ru] = ICy_{2}L^{1}L^{2}{}_{n}Ru(II)$ complex; $L^{1} =$ anionic ligand (e.g., methoxide); $L^{2} =$ neutral ligand (e.g., MeOH, HNR₂); R^{1} , $R^{2} =$ alkyl, H.

Summary

- Activation of methanol is not as difficult as often stated.
- Krische and coworkers have developed a method for the hydroxymethylation of allenes using an Ir catalyst.
- Glorius and coworkers have also developed a formylation of amines using Ru-NHC catalysis.