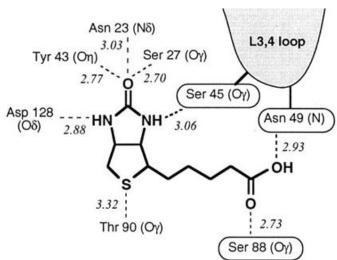

Streptavidin-Biotin system in drug delivery

Di Shen

15/10/13


1. Streptavidin/ Avidin

- •A protein purified from the bacterium Streptomyces avidinii
- •Extraordinarily high affinity for biotin (dissociation constant 10⁻¹⁴ mol/L)
- •Binding of biotin to streptavidin is one of the strongest non-covalent interactions known in nature
- •Streptavidin-biotin complex is resistant to harsh conditions such as organic solvents, denaturants, extremes of temperature and pH
- •Streptavidin is a tetramer and each subunit bind biotin with equal affinity

Origins of the high affinity between streptavidin and biotin:

- •High shape complementarity between binding pocket and biotin
- Extensive network of hydrogen bonds
 - •First shell hydrogen bonding: eight hydrogen bonds directly made to residues in the binding site
 - •Second shell hydrogen bonding: residues that interact with the first shell residues
- •Van der Waals force mediated contacts and hydrophobic interactions
- •Stabilization of a flexible loop which closes over the bound biotin

1. Streptavidin/ Avidin

Avidin-30% sequence identity to streptavidin, but almost identical 2nd, 3rd, 4th structure

- •Avidin is the other most notable biotin-binding protein, which is originally isolated from egg white.
- •Avidin has higher affinity for free, unconjugated biotin, while streptavidin is the better biotin-conjugate binder.

Applications

The valeric acid chain is used to conjugate biotin to other chemical groups, taking advantage of the free terminal carboxylic group

•N-dydroxysuccinimide (NHS) esters: target at primary amine groups

•Maleimides: target at sulfhydryl groups

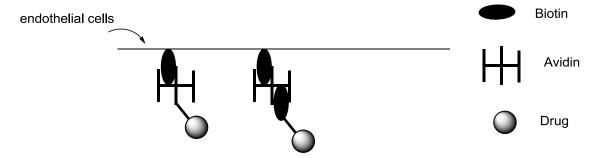
•Free amine on the biotinylation reagents: target at carboxyl groups

•Hydrazine based biotinylation reagents: target at sugars (oxidized to aldehydes with sodium periodate, then condensation with biotinylation reagents)

•Biotinylated aldehyde: target at hydroxyamines, and hydrazines

•Click chemistry: alkyne or azide

•Click chemistry: alkyne or azide


3. Applications in drug delivery

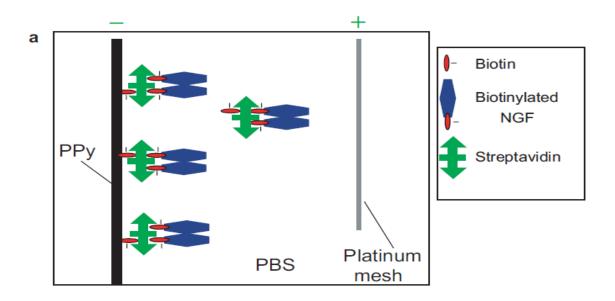
Example I: A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding

The use of a vascular catheter has allow the delivery of drugs to a limited region selectively. However, the blood flow usually flushes away drugs as soon as they are injected.

Solutions:

- endothelial cells were first biotinylated directly by biotin-LC-NHS
- •Bound by an avidinated drug or, using avidin as a linker, a biotinylated drug

Results:


The drugs that were fixed to the cells resist being flushed away with blood flow, allowing continuous drug delivery in certain target organs

3. Applications in drug delivery

Example II: Electrically controlled drug delivery from biotin-doped conductive polypyrrole

Conducting polymers (e.g., polypyrrole) offer the possibility of controllavle drug administration through electrical stimulation.

- •Attach molecules to the surface of PPy through biotin-streptavidin coupling
- •After attachment of the desired molecule to the biotin dopant, drug release is triggered through electrical stimulation (3 V was applied, or an external field being applied)

