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Origin of Life - Fundamental Issues

* Informational polymer must have arisen by purely chemical means — RNA?
* ‘BRNA World’ hypothesis — no solid experimental support

e Formation of ribonucleotides from constituent parts?

- ribose difficult to form selectively

- addition of purines to ribose is inefficient

- addition of pyrimidines to ribose does not occur at all
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Prebiotic Feedstock Molecules

* How could ribonucleotides be assembled from plausible prebiotic feedstocks?

» Reaction conditions must be consistent with early-Earth geochemical models
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Bypass free ribose and nucleobases altogether?




Pyrimidine Nucleotide Assembly

« Same small molecule building
blocks

* Proceeds via arabinose amino-
oxazoline intermediate 12

» Conditions consistent with
geochemical models

* Inorganic phosphate essential —
functions as general acid/base
catalyst, nucleophilic catalyst and
pH buffer in earlier steps as well as
being incorporated late on
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Figure 1| Pyrimidine ribonucleotide assembly options. Previously assumed
 synthesis of B-ribocytidine-2',3'-cyclic phosphate 1 (blue; note the failure of |
' the step in which cytosine 3 and ribose 4 are proposed to condense together) :
‘and the successful new synthesis described here (green). p, pyranose; f, '
. furanose.



2-Amino-oxazole Synthesis

» Constitutionally arises from [/0

condensation of cyanamide 8 and | 10 “OH |
! HO\_/:o

glycoaldehyde 10 E /
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» Urea 6 produced when excess 8

Glyceraldehyde needs neutral-
pH reaction conditions




2-Amino-oxazole Synthesis - Mechanism

* At low [OH-], 14 to 15 and 17 to 11 are very b O
slow... but cannot use OH- as specific base (?) [ + H,N— CN —_ J\ %/[ 14
OH
10
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* Inorganic phosphate (P;) can act as general base

(i.e. 29 pK, is close to neutrality, 7.21 in H,O) O
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Mixed chemical systems — reactants for a particular reaction step can control other steps




Arabinose Amino-oxazoline Formation

* In absence of P; - 12 and 21
major products (Fig a)

* In presence of P, — arabinose
12, ribose 21, xylose 22 and
lyxose 23 derivatives all
reversibly form mixture of SM
and either 24 or 25 (Fig b)

* In ‘mixed chemical system’ -
12 and 21 major products (21
can be selectively removed from
solution by crystallisation, Fig c)
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Figure 3 | Pentose amino-oxazoline stability, and assembly chemistry.

a, Structures of the arabinose (12), ribose (21), xylose (22) and lyxose

(23) amino-oxazolines and their elimination products 24 and 25. b, Relative
stabilities of the amino-oxazolines in the presence of phosphate.

¢, Formation of amino-oxazolines by addition of glyceraldehyde 9 to a
solution of 2-amino-oxazole 11, with the latter freshly formed in situ from
cyanamide 8 and glycolaldehyde 10. P;, inorganic phosphate; o/n, overnight.

Desired arabinose amino-oxazoline 12 major product in solution




Arabinose Anhydronucleoside Formation

» Unbuffered — pH rises during reaction, causing hydrolysis of 13 and subsequent reaction of
hydroxyl groups with 7 (thus relatively low yield of 26)

* P, buffered — clean reaction, phosphate removes excess 7
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P, performs dual role to control reaction




Arabinose Anhydronucleoside Phosphorylation

» Two potential procedures for phosphorylation — both employ urea (formed earlier in sequence)

« X-ray structure revealed 5 -OH abnormally sterically hindered, thus phosphorylation selective
for 3" -OH

o
b O -o P\
_O_P\ N
Ho ¢ K&z— l KQ/CY‘ HO {s
—_— NH - ‘ /
13 1+ 3 + 13+26+O O\p/ N H,
/1 \
28 d o 29
Procedure A: 32% Tr 17% 2% 7% 14% 2% Tr
Procedure B: 46% 4% - 9% - 17% 5% 18%
&
¢ HO o Ho . Procedure A:
N " kQ/ vt pyrophosphate & urea
W/ =NH, ——
5 NS/ SNH,
o \ 00 Procedure B: P, & urea
/P_O //\

o’(')_ 32 O 0O 1




Arabinose Anhydronucleoside Phosphorylation

» Cyclic phosphate 1 major product, but what about presence of contaminants in subsequent
incorporation into RNA?

* Irradiation at 254 nm leads to destruction of all nucleotides and nucleosides except 1

* Prolonged irradiation leads to partial hydrolysis of 1 resulting in uracil cyclic phosphate 33
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Figure 5 | Photochemistry of B-ribocytidine-2’,3’-cyclic

phosphate 1. Under conditions of irradiation that destroy most other
pyrimidine nucleosides and nucleotides (Supplementary Information),

1 undergoes partial hydrolysis and slight nucleobase loss. Ura, N1-linked
uracil; Cyt-H, cytosine; Ura—H, uracil.



Conclusion

Prebiotic synthesis of activated pyrimidine
nucleotides should be viewed as predisposed




Photodestruction — Possible Mechanism?
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Photodestruction — Possible Mechanism?

Figure S13: Potential mechanism to account for the stability of 1 and 33 towards
irradiation
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