Problem Set - Answers

21.01.2014

Question 1C

Question 1G

Question 1H

Question 2 A

O: sp²-hybridized

- C–F bond weakend and lengthened
- Increased steric congestion
- n -> π overlap reduced

lone pairs of O antiperiplanar to $\sigma_{\text{C-F}}$ bond

References: J. Chem. Inf. Model. 2008, 48, 1–24; Science 2007, 317, 1881–1886.

Reference: J. Chem. Inf. Model. 2008, 48, 1–24.

2 H-bonds Melting point of ds poly[AT]: 50.9 °C

3 H-bonds Melting point of ds poly[GC]: 103.8 °C

Reference: Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 7853-7858.

Reference: Angew. Chem. Int. Ed. 1998, 37, 75-78.

Reference: Angew. Chem. Int. Ed. 1998, 37, 75-78.

Amides are better H-bond donors than aromatic amines

cis conformation of amide entropically and enthalpically desifavored

Reference: Angew. Chem. Int. Ed. 1998, 37, 75–78.

Question 4 - Bonus

Carbonyl/sulfonyl O 2.7 - 3.0 2.8	0 0 1
	8 - 3.1
Heteroaromatic N 2.7 - 3.0 2.8	8 - 3.2
Carboxylic acid O 2.6 - 2.8 2.7	7 - 3.0

Reference: J. Med. Chem. 2010, 53, 5061–5084.

U

–3*7.9 kJ mol ⁻	⁻¹ = –23.7 kJ mol ⁻¹
–4*2.9 kJ mol	⁻¹ = –11.6 kJ mol ⁻¹
Total:	–35.3 kJ mol ^{–1}

Q***U**: *K* = ≥10⁵ M⁻¹

Reference: J. Am. Chem. Soc. 1992, 114, 4011–4013; Chem. Eur. J., 1996, 2, 1446–1452.

 $-3*7.9 \text{ kJ mol}^{-1} = -23.7 \text{ kJ mol}^{-1}$ $-2*2.9 \text{ kJ mol}^{-1} = -5.8 \text{ kJ mol}^{-1}$ $+2*2.9 \text{ kJ mol}^{-1} = +5.8 \text{ kJ mol}^{-1}$ Total: $-23.7 \text{ kJ mol}^{-1}$

R*T: *K* = 10⁴ M⁻¹

Compare G*C base pairing in DNA.

Reference: J. Am. Chem. Soc. 1992, 114, 4011–4013; Chem. Eur. J., 1996, 2, 1446–1452.

 $-3*7.9 \text{ kJ mol}^{-1} = -23.7 \text{ kJ mol}^{-1}$ +4*2.9 kJ mol}^{-1} = +11.6 kJ mol^{-1} Total: -12.1 kJ mol^{-1}

S*V: *K* = 90 M⁻¹

Reference: J. Am. Chem. Soc. 1992, 114, 4011–4013; Chem. Eur. J., 1996, 2, 1446–1452.