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Course Structure
1) Nucleophilic addition to C=0
A) Nucleophiles and electrophiles: General principles
B) Reversible addition (hydrates and hemiacetals)

C) Irreversible addition (organometallic addition and reduction)

2) Nucleophilic substitution of C=0

A) Acetals

B) Imines, oximes and hydrazones

C) Formation of C=C bonds from carbonyls

D) Removal of C=0 frbm carbonyls

3) Nucleophilic substitution at C=0

A) Tetrahedral intermediates in substitution;

B) Factors that affect reactivity of C=0 towards nucleophiles; leaving group ability; IR spectroscopy
C) The reactivity of acid chlorides (RCOCI)

D) The reactivity of anhydrides (RCO),0

E) The reactivity of esters COOR

F) The reactivity of amides CONR,

4) Enolisation of carbonyl compounds

A) keto-enol tautomerism

B) enols and enolates as nucleophiles

C) condensation reactions with carbonyl groups

D) conjugate additions

Suggested Reading:

Core Carbonyl Chemistry, J. Jones, Oxford Primer

Organic Chemistry, Clayden, Greeves, Warren and Wothers
Organic Chemistry, Volhard and Schore

A guidebook to mechanism in organic chemistry, Sykes

The Chemistry of the Carbonyl Group, Warren



1. Nucleophilic addition to C=0
A) Nucleophiles and Electrophiles

Structure of carbonyl compounds consider the o and n framework
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So, C=0 have a low energy (unfilled) 7* orbital that has a large coefficient on carbon and this is crucial

to its reactivity. @
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In order to break a bond we place two electrons in the antibonding orbital; the bond order then
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When nucleophiles attack the C=0 group they do so by passing electrons trom their highest

occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of the

cavorylie. BREA I THE T BoND (ELECTRONS —> —r‘*)

Negatively charged species are also attracted to the electron deficient carbon atom.

So, in the addition of cyanide to acetone, the following electron movements are involved.

a) Curly arrow representation
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b) orbitals involved
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All additions to C=0 follow the same pattern of events, but the nature of the HOMO depends on
the particular nucleophile used. Once you understand the orbitals involved you do not need to

draw the orbitals for every addition to a carbonyl.

We must make a distinction between reversible and irreversible additions:

B Reversible addition: eg. The addition of cyanide can be reversed by adding a base
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The addition of water is also reversible and observed through the formation and collapse of
hydrates ¥ | “Y_
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hydrate of ketone

For this reversible reaction, the thermodynamic stability of the carbonyl versus the hydrate will
determine the percentage of hydrate at equilibrium. i& ﬂ\e Mmoo 441{\0./& C Con‘t'c‘b(_

Standard ketones (acetone) contain very little hydrate: )S)\ H @ OH
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Factors influencing extent of hydration
i) Steric hindrance: repulsion between groups that are close in space: KE{:O nes Q@re [Q SS
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ii) Electron withdrawing groups. Inductlve effect increases the reactivity of the C=0 to
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iii) Delocalisation (conjugation) RE :D WCES H \ID RATION
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These three factors influence other C=0 reactions too.
Of course, the addition of alcohols to C=0 is also easy (and reversible).
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- NO further reaction in BASE

Further reading: look up the (reversible) addition of bisulfite to carbonyl compounds and also the

Meerwein Pondorff Verley reduction. H 5 O
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C. Irreversible addition at a carbonyl is perhaps more common :

i) Organolithium reagents are very reactive: 3 H o
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i) Addition of organomagnesium reagents, such as Grignards, is v. important in synthesis
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These organometallic reagents add to C=0, although the precise details of the attack are complex
because the metal ion acts as a Lewis acid.
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Redu%ion of carbonyl compounds is observed when bulky Grignards are used e.g. {BuMgBr:
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We see a similar pattern of reactivity during the Cannizzaro reaction:

OH
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The mechanism involves base catalysed addition of hydroxide to the aldehyde; followed by
hydrlde transfer.
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Q. Why does this reaction only work with aldehydes that have NO alpha protons?

However, reduction of a carbonyl is best accomplished with NaBH, or L|AIH4
Ketones are reduced to ) = ﬁ‘\ \ col ! !
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Reaction mechanism with LiAlH4 is more complex and takes place in an inert solvent such as

ether (this is because
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2. Nucleophilic substitution of C=0

A) Acetals: In acid, hemiacetal formation from an aldehyde or ketone does not S TO P
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This process is an equilibrium and can be shifted in either direction by removal of the products or
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Acetals are stable to base, nucleophiles and oxidants; so they are commonly used as (Q_
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B) Formation of Imines and related derivatives from carbonyls

Nitrogen based nucleoihiles also add to carbonyl compounds: consider attack of a primary amine

at a ketone. 8? S L \,)'1 *"A (’("1_4'* U@
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Other amine derivatives add to carbonyl compounds in an analogous manner.
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These condensations are very pH dependent
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~ Aside on 2° amines: Note that secondary amines cannot condense with a carbonyl to produce a
neutral compound
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And, just like aldehydes and ketones, imines are useful electrophlles although they are less
electrophilic (because nitrogen is less electronegative than oxygen)
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A key step in the synthesis of Valsartan (Diovan) Z20l0 80. $ A L “lm

This is called reductive amination: a method for converting aldehydes and ketone to amines

Bearing in mind the reaction of aldehydes and ketones with cyanide, we can rationalise the
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C) Formation of C=C bonds from carbonyls

i) Making alkenes from carbonyl compounds: the Wittig reaction (which consists of
1) Reaction of an alkyl halide with triphenylphosphine '
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2) Treatment of the phosphonium salf with strong base fo make an YLID
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Ester stabilised ylids work fine but can sometimes be unreactive. Therefore, use %) more reactive
nucleophile: '
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D) Removal of C=0 from carbonyls: the Wolff Kishner reaction

It is sometimes useful to be able to remove a C=0 completely from a molecule. There are several
wavys of doing this, dependent upon whether the molecule can tolerate acid or base
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3. Nucleophilic substitution at C=0

A) Tetrahedral intermediates in substitution

Overall, the substitution process can be represented as:
0
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R Nu

This reaction does NOT go through a direct displacement: instead, the nucleophile finds it easier
to add to the carbonyl group (the n* is lower in energy and more accessible to the HOMO of the
nucleophile than a o* orbital).

O
‘\Mﬂ /‘ J\/\' % )\\
‘N
Sn2A {ike Nw
The intermediate (known as a TETRAHEDRAL INTERMEDIATE) can do two things,
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Lets focus on each step of this mechanism.



B) Step 1: How does the nature of X affect the reactivity of the carbonyl group towards

nucleophiles?
There are two effects here: l -Jv 4» /@ ] Cl
* ¢ o el : W€ N -
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Increased electronegativity of X
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(ii) Conjugation of a lone pair on X with the C=0

Think about the shape of the ester oxygen
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B) Step 2: Leaving group ability determines which product is formed

Leaving group ability: correlation with pKa How do we know which is the best leaving group?

o Q

N |
N
There is already a scale that can help us: pKa: B—X ~ =— \’\@ + \(Q Simi [ar

‘0‘<q= - IDJ Ka ’i-j !L( \(r

ox o

Large values of pKa mean small values of Ka ie H— X N UOQQ k QCEd

H-X “= H@* %= and. X®

s Q POO’-

leaumq qroup
Small values of pKa mean large values of Ka ie H \( 1S QA "}’ /\r‘ QcC f’

WY \A@ ‘7/" o.nd. X@ s o aoool
leauv\q &rouf

N

Leaving group X~ pKa of H-X

Me S’Q

H@@ u4-O T Udeak QCZAS POOr LC}
__ NH: Y

EtOg b

HO 1§-8

. .G
MeCOQ ’4:. L S‘l’ro A o AS g)og (i L. . _[ .
Cl @ e q__ j H

18



Probing the nature of the carbonyl group by Infra-red (IR) spectroscopy
IR spectroscopy measures S tr et C_L’\.l n 3 OIP b on dS
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So, strong bonds absorb at high

The factors discussed earlier will influence the strength of the C=0 bond in the following ways:

+ S
1) Delocalisation WEAKENS E“ N > )

H\e =0 | [

2) Inducti fiects STRENGTHEN C;O - o®
nductive effects L A //

The derivatives shown earlier have a combination of the 2 effects and this can be seen in the IR.
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Functional groups in action.

C) X= chlorine then we have an acid chloride which are very reactive species because
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Note that a base must be present here because
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You can make acid chlorides from carboxyllc acids like this:
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D) When X=0COR these are called anhydrides and are slightly less reactive than acid
chioides, buk  skill use Pw\ ele c(:ropl\'o les
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As one would expect, reaction of anhydrides mirrors that of acid chlorides
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We can also increase the reactivity of esters by using ACID catalysis
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Drive reaction to completion by using an excess of water or remove the alcohol by-product

Further reading: the acid and base catalysed hydrolysis of esters can be classified into 8 different
catagories (Axc1, Ayc2, Ax 1, Ay2, Bicl, Bac2, By 1, By 2) depending upon the mechanisem-see
J. March, Advanced Orgé‘ﬁn’ﬁ' Chemistry, Fourth Ed, P378. ? ~ o~ & ,ﬁ)
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Given the above, the following should come as no surprise:
1) reaction with an amine (4)
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So, what happens if we try to make a ketone via reaction of an ester with a qua Al QJ"J ?
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In fact, this is a good method for making P
tertiary alcohols whereby two R groups are
OH L‘
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Clearly there is a problem in making ketones with this chemistry. Three solutions are available.

1) React a carboxylic acid with TWO equivalents of a reactive organolithium reagent
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2) Use an acid chloride rather than an ester; AND decrease the reactivity of the nucleophile by

changing the metal counterion from lithium to C’ o Pp E R
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The selectivity displayed below was used as a key step in the synthesis of an antibiotic, septamycin
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Solution 3 can wait until we have discussed amides:

F) X= NR;, amides r
These are the least reactive of the derivatives (towards nucleophiles) discussed so far because
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As the constituents of poly amides (ie peptides) these functional groups are essential parts of
biological systems.

We can hydrolyse an amide bond in the laboratory, but require harsh acidic or basic conditions to
do it _—




notice that one equivalent of acid is
C 70 acetal l\‘j dro ldsis with ca‘[:o.(ajci ¢
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Generally, acid is better than base for hydrolysing amide, although strong bases such as t 6(4.0
can do the hydrolysis.
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Think about the reduction of amides with LiAlH, H A[—
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Keystep in the synthesis of ramipril (hypertension)
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A simple way of making substituted amines involves coupling of an acid chioride with an amine to
give an amide, followed by
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Now we can return to solution 3 for making ketones from addition to carbonyl compounds without

over-reaction.
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The following scheme says it all
Increased reactivity:

Increased leaving group ability

4

k OH

16

base

30

A

Increasing pKa
of leaving group's
conjugate acid
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Finally, note the central position that carboxylic acids have- they can be transformed into
DHAQI‘ dem\{a“:t\lQ,

O./l:{

Recall methods for making carboxylic acids:
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The pKa of a carboxylic acid can tell us a lot about the nature of the Q rou P

Advanced reading: for a comprehensive list of pKa values for organic compounds (and more) see:
htip.://research.chem.psu. edu/brpgroup/vKa_compilation.pdf

pKa
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